Rhizoctonia solani and Bacterial Inoculants Stimulate Root Exudation of Antifungal Compounds in Lettuce in a Soil-Type Specific Manner
نویسندگان
چکیده
Previous studies conducted on a unique field site comprising three contrasting soils (diluvial sand DS, alluvial loam AL, loess loam LL) under identical cropping history, demonstrated soil type-dependent differences in biocontrol efficiency against Rhizoctonia solani-induced bottom rot disease in lettuce by two bacterial inoculants (Pseudomonas jessenii RU47 and Serratia plymuthica 3Re-4-18). Disease severity declined in the order DS > AL > LL. These differences were confirmed under controlled conditions, using the same soils in minirhizotron experiments. Gas chromatography-mass spectrometry (GC-MS) profiling of rhizosphere soil solutions revealed benzoic and lauric acids as antifungal compounds; previously identified in root exudates of lettuce. Pathogen inoculation and pre-inoculation with bacterial inoculants significantly increased the release of antifungal root exudates in a soil type-specific manner; with the highest absolute levels detected on the least-affected LL soil. Soil type-dependent differences were also recorded for the biocontrol effects of the two bacterial inoculants; showing the highest efficiency after double-inoculation on the AL soil. However, this was associated with a reduction of shoot growth and root hair development and a limited micronutrient status of the host plants. Obviously, disease severity and the expression of biocontrol effects are influenced by soil properties with potential impact on reproducibility of practical applications.
منابع مشابه
Soil Type Dependent Rhizosphere Competence and Biocontrol of Two Bacterial Inoculant Strains and Their Effects on the Rhizosphere Microbial Community of Field-Grown Lettuce
Rhizosphere competence of bacterial inoculants is assumed to be important for successful biocontrol. Knowledge of factors influencing rhizosphere competence under field conditions is largely lacking. The present study is aimed to unravel the effects of soil types on the rhizosphere competence and biocontrol activity of the two inoculant strains Pseudomonas jessenii RU47 and Serratia plymuthica ...
متن کاملDiversity and functions of volatile organic compounds produced by Streptomyces from a disease-suppressive soil
In disease-suppressive soils, plants are protected from infections by specific root pathogens due to the antagonistic activities of soil and rhizosphere microorganisms. For most disease-suppressive soils, however, the microorganisms and mechanisms involved in pathogen control are largely unknown. Our recent studies identified Actinobacteria as the most dynamic phylum in a soil suppressive to th...
متن کاملWheat Genotype-Specific Induction of Soil Microbial Communities Suppressive to Disease Incited by Rhizoctonia solani Anastomosis Group (AG)-5 and AG-8.
ABSTRACT The induction of disease-suppressive soils in response to specific cropping sequences has been demonstrated for numerous plant-pathogen systems. The role of host genotype in elicitation of the essential transformations in soil microbial community structure that lead to disease suppression has not been fully recognized. Apple orchard soils were planted with three successive 28-day cycle...
متن کاملRhizosphere Competence and Biocontrol Effect of Pseudomonas sp. RU47 Independent from Plant Species and Soil Type at the Field Scale
Biocontrol inoculants often show inconsistency in their efficacy at field scale and the reason for this remains often unclear. A high rhizosphere competence of inoculant strains is assumed to be a key factor for successful biocontrol effects as the biocontrol strain has to compete with the indigenous microbial community in the rhizosphere. It is known that many factors, among them plant species...
متن کاملRoot exudation and root development of lettuce (Lactuca sativa L. cv. Tizian) as affected by different soils
Development and activity of plant roots exhibit high adaptive variability. Although it is well-documented, that physicochemical soil properties can strongly influence root morphology and root exudation, particularly under field conditions, a comparative assessment is complicated by the impact of additional factors, such as climate and cropping history. To overcome these limitations, in this stu...
متن کامل